Imineasure, Inc.

MICRO P OWNERS MANUAL

CONTENTS

1. INTRODUCTION 2
2. RECEIVING AND UNPACKING 3
3. SAFETY CONSIDERATIONS 3
4. CONNECTOR WIRING INFORMATION 4
5. MECHANICAL ASSEMBLY 6
6. PANEL MOUNTING 7
7. CONNECTORS 7
8. FRONT PANEL SETUP KEYS 8
9. SETTING MENU LOCKOUTS 9
10. SETUP MENU 10
11. DC VOLTS \& AMPS 20
12. PROCESS SIGNAL INPUTS 22
13. THERMOCOUPLES 24
14. PT100 RTD'S 26
15. STRAIN GAUGES AND POTENTIOMETERS 28
16. TRUE RMS VOLTS \& AMPS 30
17. LOAD CELLS AND MICROVOLTMETER 32
18. DUAL ALARM OUTPUTS 34
19. ANALOG OUTPUT 36
20. RS-232 AND RS-485 INTERFACE 37
21. PARALLEL BCD OUTPUT 38
22. 10 AND 24 VDC EXCITATION OUTPUTS 39
23. DIGITAL CONTROL INPUTS 40
24. CALIBRATION 41
25. SPECIFICATIONS 41

This series of panel instruments is a versatile, cost effective solution to a wide variety of monitoring and control applications. These instruments are easily set to produce an accurate display of temperature, pressure, flow, weight, voltage or current. Front panel push-button or RS-232/RS-485 setup allows the user to customize the unit for a specific application. Digital scaling of zero and span provides direct readout in engineering units. Concurrent Slope (Pat $5,262,780$) is a new method of analog-to-digital conversion that provides 60 conversions per second (50 for 50 Hz operation) while integrating over a full cycle of the line for maximum noise rejection. Self calibration cycles reduce the average reading rate to 56 per second (47 for 50 Hz). This fast read rate provides an accurate display of peak signal input and quick response in control applications. The adaptive auto filter automatically supplies a time constant compatible with the signal noise level. This ensures stable displayed readings and outputs while responding rapidly to changes of the input signal that exceed a selected threshold value. Selective security lockout of the front panel setup protects against accidental changes to the meter. The instrument uses a lightweight, high-efficiency switching power supply operating from AC or DC voltages. The meter can be powered worldwide without changes to the supply. An optional low voltage supply operates on 9 to 37 Vdc from batteries or 8 to 28 Vac from sources such as 400 Hz aircraft power. Both supplies have isolated 5, 10, and 24 Vdc excitation outputs to power transducers. The NEMA 4 (IP65) $1 / 8$ DIN case is made of high impact, 94V-0 UL-rated plastic. Mounting is from the front of the panel and requires less than 110 mm behind the panel. All wiring is by removable plugs conforming to IEC950 safety standards. All output options are isolated from meter and power ground by 250 Vac minimum.
The extended DPM is capable of linearizing a nonlinear input signal such as a thermistor, gallons of liquid in a irregularly shaped tank, or altitude. Up to 240 points may be linearized by a computer program that stores the parameters via RS232 into permanent nonvolatile memory. The meter is also capable of measuring rate of change. The level of a tank is measured and the difference between readings determines the flow rate in or out of the tank.

The dual setpoints have two form C (10 A @ 250 Vac) relays or solid state relay outputs for alarm and control capabilities. Either setpoint may be latching or nonlatching and separately configured to be energized above or below the setpoint, as deviation alarms, or in a fail-safe mode. Additionally, outputs may also be selected to operate from the filtered signal to reduce relay chatter or from the unfiltered signal for fast response. Snubber circuits, programmable relay switching time delay and selectable hysteresis extend relay contact life.
Isolation of the 4 to 20 mA and 0 to +10 V analog outputs eliminates ground loop problems. The output may be scaled by front panel push-buttons or RS-232/RS-485. For thermocouples and RTD's, the output is linearized. The 4 to 20 mA output will drive up to an 600 Ohm load with 12 V compliance
The meter offers RS232 or RS485 bidirectional communications or parallel, 3-state BCD output to interface with computers, PLC's or other digital devices. IBM PC compatible software is available for programming the unit by the RS232 and RS-485 interfaces.

Your meter was carefully tested and inspected prior to shipment. Should the meter be damaged in shipment, notify the freight carrier immediately. In the event the meter is not configured as ordered or the unit is inoperable, return the unit to the place of purchase for repair or replacement. Please include a detailed description of the problem.

3.

SAFETY CONSIDERATIONS

Warning $\overline{\mathrm{V}}$: The use of this equipment in a manner other than specified may impair the protection of the device and subject the user to a hazard.

Visually inspect the unit for signs of damage. If the unit is damaged, do not attempt to operate.

This unit must be powered with AC (mains) from 85 to $264 \mathrm{Vac}(90$ to 370 Vdc) with the high voltage power supply option or 8 to 28 Vac (9 to 37 Vdc) with the low voltage power supply option. Verify that the proper power option is installed for the power to be used.

This meter has no AC (mains) switch; it will be in operation as soon as power is connected.
Caution: The 85 to $264 \mathrm{Vac}(90$ to 370 Vdc) mains connector (J1 Pins 1-3) is color coded Light Blue to differentiate it from other input and output connectors. The 8 to $28 \mathrm{Vac}(9$ to 37 Vdc) mains connector is not color coded because these voltages are not considered hazardous.

Do not make signal wiring changes or connections when power is applied to the instrument. Make signal connections before power is applied and, if reconnection is required, disconnect the AC (mains) power before such wiring is attempted.

To prevent electrical or fire hazard, do not expose the instrument to excessive moisture.
Do not operate the instrument in the presence of flammable gases or fumes; such an environment constitutes a definite safety hazard. This meter is designed to be mounted in a metal panel.

Verify the panel cutout dimensions and mount according to instructions.

4.1 CONNECTOR LOCATION

The connectors are the screw terminals that plug into the mating jack mounted on the printed circuit board. P3 is either a 6 conductor phone plug for RS-232 and RS-485 or a 30 pin, mass termination, edge connector for parallel BCD.

4.2 J 1 - POWER AND DIGITAL CONTROLS

$4.3 \quad$ J5-SIGNAL INPUT

DC \& PROCESS

2 WIRE PROCESS TRANSMITTER

AC (TRUE RMS)

*Note: Non-isolated digital control inputs A and B are menu selectable for Tare, Peak Display, Hold, or Reset and external control of decimal points.
Digital Input B selected - Jumper "h" +5V Output selected - Jumper "g"

RTD (3-WIRE)

THERMOCOUPLE

4.3 J5-SIGNAL INPUT (CONTINUED)

LOAD CELL METER

4.4 J4 - ANALOG OUTPUT

0 TO 20 MA OUTPUT 0 TO 10 VDC OUTPUT ISOLATED GROUND

4.5 J 2 - DUAL SETPOINT CONTROLLER

RELAY OUTPUTS

SOLID STATE RELAY OUTPUTS
Switching DC 125 Vdc @ 240 ma max.
ALARM 1 - SOURCE 1 ALARM 1 - SOURCE 2 ALARM 1 - DRAIN

ALARM 2 - SOURCE 1 ALARM 2 - SOURCE 2 ALARM 2 - DRAIN

$\begin{aligned} & 10 \\ & \hline 10 \\ & \hline 10 \end{aligned}$		

This configuration is directly compatible with the optotransistor output board.

4.6 J3 DIGITAL INTERFACE

BCD OUTPUT			
1	1	2	2
4	3	4	8
10	5	6	20
40	7	8	80
100	9	10	200
400	11	12	800
1K	13	14	2K
4 K	15	16	8K
10K	17	18	20K
40K	19	20	80K
100K	21	22	200K
400K	23	24	800K
+ POL	25	26	DATA READY
$\overline{\text { BCD HOLD }}$	27	28	BCD ENABLE
ISOLATED GND	29	30	ISO 5 / 15VDC

5.

MECHANICALASSEMBLY

5.1 REMOVING THE REAR PANEL

To remove the rear panel, first remove any connectors that are installed. Press down on both rear panel retaining tab releases(see Fig. 5.1) and pull the top of the rear panel away from the case. The bottom of the rear panel will now lift out.

Retaining Tab and Release

Retaining Tab

Figure 5.1

5.2 Removing the meter from the case

After removing the rear panel, the meter can be taken out of the case by carefully grasping the power supply board and signal conditioner board at the connectors and sliding the unit out the back of the case. See Fiqure 5.2.

5.3 REASSEMBLING THE METER

Reverse the preceding procedures to reinstall the meter in the case. After the meter is in the case, insert the bottom tabs on the rear panel into the case first. Care must be taken to ensure the printed circuit boards are properly aligned by the board retaining pins on the inside of the rear panel.
6. PANEL MOUNTING

Ensure the O-ring is in place. Turn the two mounting screws counterclockwise until the space between the mounting pawl and the bezel is greater than the panel thickness. Insert the meter in the panel cutout. Turn the mounting screws clockwise until the meter is securely mounted in the panel. Do not overtighten the mounting screws.

The meter uses UL/VDE rated screw terminal connections that plug into the mating PC jack.

8.

MENU KEY

The menu key steps through the various meter parameters that may be selected. These menu items may be "locked out" from front panel selection by software and hardware.

PEAK DISPLAY KEY (DIGIT SELECT)

In the Operating Mode, pressing the Peak Display Key causes the peak value of the input signal to be displayed. Pressing the key again returns the display to the present value. In the Menu Mode , the Digit Select Key (Peak Display Key) is used to select input type and decimal point or to select one of the five display digits for programming. In the main menu, pressing the Digit Select Key causes the value or code that is stored for that menu item to be displayed and the left hand digit flashes. Each time the key is pressed, the next digit to the right will flash. The value of the flashing digit may be changed using the Value Select Key. In the Alarm Mode, pressing the Digit Select Key causes the most significant digit of the displayed setpoint value to flash. Digits are then selected the same as in the Menu Mode.

RESET KEY (VALUE SELECT)

In the Operating Mode, holding the Reset Key depressed and pressing any other key causes a reset to occur. The Menu Key resets all meter functions, the Alarm Key resets any alarm conditions and the Peak Display Key resets the peak value to present value. In theMenu Mode or Alarm Mode, the Value Select Key (Reset Key) sets the value of the flashing digit. Each time the key is pressed, the value increases by one. Holding the key down causes the digit to automatically step through the numbers.

ALARM KEY (REVERSE MENU)

In the Operating Mode, pressing the Alarm Key displays the setpoint of Alarm 1 and then Alarm 2. These values may be changed using the Digit Select Key and the Value Select Key. In the Menu Mode, pressing the Alarm Key steps the display backward through the menu.
9. SETTING MENU LOCKOUTS

For security and ease of operation, any or all program menu items may be disabled. Each function to be disabled is set to "1" in the menu items, " Loc 1"," Loc 2" or "Loc 3". These lockout menu items may in turn be "locked-out" by installing an internal hardware shorting jumper. With the jumper installed, the operator has access only to enabled menu items.

9.1 SETTING HARDWARE LOCKOUT JUMPER

Lockout Jumper

To access the jumper, remove the rear panel per Section 5.1. Remove jumper "a" located on the lower portion of the power supply board next to the input connectors (see figure at left) to enable the software lockouts. Replace the jumper to disable software lockouts.
Jumper Removed - Loc 1,2 and 3 are displayed as menu items and allow other menu items to be locked out or enabled.
Jumper Installed - Loc1, 2 and 3 are not displayed on program menu
Figure 9.1

9.2 SETTING SOFTWARE LOCKOUTS

When setting up the meter, it may be necessary to enable some of the menu items. Any digit set to "1" in Loc 1, Loc 2 or Loc 3 indicates that item is locked out. By setting the digit to " 0 ", the item will appear in the menu. Be sure to reset the lockout bit to "1" after selection if you do not want the value changed by the operator.
Note: The hardware lockout jumper must be removed to access Loc 1, 2 and 3 (see section 9.1)

MENU KEY

DIGIT SELECT KEY
VALUE SELECT KEY A

Press the key until Loc 2 is displayed.	Press to display status and select left digit. Press again to select another digit. Selected digit will flash. "1" indicates the menu item is disabled. " 0 " indicates the item is enabled.	Press \boldsymbol{A} to select " 0 " or "1" for flashing digit 2 - Alarm Setup 3 - Alarm setpoint value programming 4 - Analog output scaling 5 - Serial interface setup
【ロ!	1111	$\frac{\square \square \square}{2} \square \prod_{2} \square$
Press the $\boldsymbol{\square}$ key until Loc 3 is displayed. Lockout 3 controls the operation of the front panel push-buttons when the meter is in the normal mode of operation.	Press to display status and select left digit. Press again to select another digit. Selected digit will flash. "1" indicates the menu item is disabled. " 0 " indicates the item is enabled.	Press $\boldsymbol{\Delta}$ to select " 0 " or " 1 " for flashing digit 2 - View peak value 3 - View alarm setpoints 4 - Reset (peak and latched alarms) 5 - Reset (meter reset)

10.

MENU KEY \longrightarrow
DIGIT SELECT KEY
VALUE SELECT KEY A
INPUT SIGNAL SCALING METHOD

Lo in	0.021	0.021
Low signal input value (not available for tC \& rtd)	Set the input signal to zero or a known low value	Press the $\mathbf{\Delta}$ key to store the low signal input.
Hiln	20.094	20.094
High Signal Input Value	Set the input signal to a known high value	Press the $\boldsymbol{\Delta}$ key to store the high signal input.
Lo rd	0.00000 .000000000	0.000
Set Low Displayed Reading for Low Signal Input	0.00000 .0000 Select digit. Digit will flash	Select 0 through 9 for flashing digit. Decimal point location is fixed by dEC.Pt.
Hird	0.00000 .00000 .0000	0.000
Set High Displayed Reading for High Signal Input	0.00000 .0000 Select digit. Digit will flash	Select 0 through 9 for flashing digit. Decimal point location is fixed by dEC.Pt.

Meter Configuration	00000 Operates as a rate of change meter Extended version only	$\mathbf{0}$ Not rate of change $\mathbf{1}$ Rate $\times 0.1$ 2 Rate $\times 1$ 3 Rate $\times 10$ 4 Rate $\times 100$ 5 Rate $\times 1000$ 6 Rate $\times 10000$
	00000 Selection of scaling by reading input signal or by Setup selection	Use setup scaling method Scale by reading input
	00000 Selects between continuous (unlatched) data or single value (latched) of RS232 data when RTS is high or open	0 Unlatched 1 Latched
	00000 RS485 interface operates in the full duplex or half duplex mode	0 Full duplex mode 1 Half duplex mode
	00000 Scaling for nonlinear input Extended version only	0 Linear input 1 Custom curve
FiLtr Filtering	00000 Alarm filtering	0 Output is unfiltered 1 Output is filtered
	00000 Peak display filtering	0 Peak of unfiltered signal 1 Peak of filtered signal
	$\begin{array}{\|l\|} \hline 00000 \\ \hline \text { Display filtering } \\ \hline \end{array}$	0 Batch average, 16 rdgs 1. Display filtered signal

DIGIT SELECT KEY
VALUE SELECT KEY A

$\begin{array}{\|l\|} \hline \text { FiLtr } \\ \hline \text { Filtering } \\ \text { (continued) } \end{array}$	00000 Adaptive filter response	[0] Low threshold level [1] High threshold level
	00000 Input signal filtering	0 Autofilter 1 Batch avg, 16 rdgs. 2 Moving avg, 08 sec . (3 Moving avg, .15 sec . 4 Moving avg, .3 sec . 5 Moving avg, 6 sec . Moving avg, 1.2 sec . Moving avg, 2.4 sec . Moving avg, 4.8 sec . 9 Moving avg, 9.6 sec . A Unfiltered
dEc.Pt Decimal point selection	d.dddd	
(Scale and Offset selected) SCALE Scale factor multiplier (not available for tC)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Select 0 through 9 for flashing digit and decimal point location when decimal point is flashing
OFFSt Offset or Zero Value	0.0000 0.0000 0.0000 0.0000 0.0000	Select 0 through 9 for flashing digit. Decimal point location is fixed by dEC.Pt selection
(coordinates of 2 pts method) Lo in Low signal input value (not available for tC \& rtd)	$\begin{array}{\|l\|l\|} \hline 0.0000 & 0.0000 \\ \hline 0.0000 & 0.0000 \\ \hline \hline 0.0000 & \\ \hline \end{array}$	Select 0 through 9 for flashing digit. Decimal point location is fixed by input range chosen.
Lo rd Low Displayed Reading at Low Signal Input	$\begin{array}{ll} \hline 0.0000 & 0.0000 \\ \hline 0.0000 & 0.0000 \\ \hline 0.0000 \end{array}$	Select 0 through 9 for flashing digit. Decimal point location is fixed by dEC.Pt selection
Hi ln	0.0000 0.0000 0.0000 0.0000 0.0000	Select 0 through 9 for flashing digit. Decimal point location determined by input range chosen.

Hird High Displayed Reading at High Signal Input	$\begin{array}{\|l\|l} \hline 0.0000 & 0.0000 \\ \hline 0.0000 & 0.0000 \\ \hline 0.0000 \end{array}$	Select 0 through 9 for flashing digit. Decimal location is fixed by dEC.Pt selection.
ALSEt Alarm Operation Setup (Only enabled if relay output is installed).	00000 Relay state when alarm is active	0 Relay 1 on, Relay 2 on 1 Relay 1 off Relay 2 on 2 Relay 1 on, Relay 2 off 3 Relay 1 off, Relay 2 off
	00000 Alarm latching or nonlatching	0 Alarm 1 nonlatching, Alarm 2 nonlatching 1 Alarm 1 latching, Alarm 2 nonlatching 2 Alarm 1 nonlatching, Alarm 2 latching 3 Alarm 1 latching, Alarm 2 latching
	00000 Alarm status	(0) AL1 active high AL2 active high 1 AL1 active low AL2 active high 2 AL1 disabled AL2 active high (3 AL1 active high AL2 active low 4 AL1 active low AL2 active low 5 AL1 disabled AL2 active low 6. AL1 active high AL2 disabled 7 AL1 active low AL2 disabled (8 AL1 disabled AL2 disabled

MENU KEY $\boldsymbol{\square}$	DIGIT SELECT KEY	VALUE SELECT KEYA
ALSEt (continued) Alarm Operation Setup	00000 Selection of Hysteresis mode or Band Deviation mode of alarms.	[0] AL1 Band deviation AL2 Band deviation 1 AL1 Hysteresis AL2 Band deviation 2 AL1 Band deviation AL2 Hysteresis 3 AL1 Hysteresis AL2 Hysteresis 4 No deviation or hysteresis in menu
	00000 Number of readings in the alarm zone to cause an alarm	(0) After 1 reading 1 After 2 readings 2 After 4 readings 3 After 8 readings 4 After 16 readings 5 After 32 readings 6 After 64 readings 1 After 128 readings
dEU1H Amount of deviation or hysteresis - Alarm 1 (Only enabled if relay output is installed).	00000 00000 00000 00000 When the deviation value is >0, the alarms operate above and below setpoint by the value entered.	Select 0 through 9 for flashing digit.
dEU2b Amount of deviation or hysteresis - Alarm 2 (Only enabled if relay output is installed).	00000 00000 00000 00000 00000 When the deviation value is >0, the alarms operate above and below setpoint by the value entered.	Select 0 through 9 for flashing digit.
An Set Setup of analog output. (Only enabled if analog output board is installed).	00 Calibrated output is current or voltage.	0. Current output 1 Voltage output
	00 Analog output filtering	ㅇ Analog output unfiltered 1 Analog output filtered

MENU KEY \square	DIGIT SELECT KEY $>$	VALUE SELECT KEY
(if analog output installed) An Lo Displayed value for 0 voltage or current output	$\begin{aligned} & \hline 0.0000 \\ & \hline 0.0000 \\ & \hline 0.0000000000 \\ & \hline 0.00000 \end{aligned}$	Select 0 through 9 for flashing digit. Decimal point location fixed by dEC.Pt selection.
An Hi Displayed value for 10 volts or 20 mA output	$\begin{array}{\|l\|l\|} \hline \underline{0.0000} & 0.0000 \\ \hline 0.0000 & 0.00000 \\ \hline \hline 0.0000 & \\ \hline \end{array}$	Select 0 through 9 for flashing digit. Decimal fixed by DEC.Pt selection.
(if serial interface is installed) Ser 1 Serial interface setup Fixed Parameters No parity 8-bit word 1 stop bit	000	0 Send unfiltered signal 1 Send filtered signal
	000 Baud rate	$\mathbf{0}$ 300 baud $\mathbf{1}$ 600 baud $\mathbf{2}$ 1200 baud $\mathbf{3}$ 2400 baud $\mathbf{4}$ 4800 baud $\mathbf{5}$ 9600 baud $\mathbf{6}$ 19200 baud
	000 Digital output rate (in seconds)	
Ser 2 Serial interface setup	0000 Line Feed	0 None after carriage rtn 11 LF after carriage return
	0000 Alarm data transmitted with meter readings	0 No alarm data 1 Alarm data with reading
	0000 Control of digital output	0 Continuous output (1) Output on RS-232 / RS-485 command only

MENU KEY \square	DIGIT SELECT KEY $>$	VALUE SELECT KEY
Ser 2 (continued) Serial interface setup	0000 Meter address for RS-232/RS 485 communication (digit display, address number of meter) Note: Addresses 1 through 15 are denoted by 1 through 9 and A through F. Addresses 16 through 31 use the same character followed by a decimal point.	
Loc 1 Lockout of Menu Items (Lockout jumper must be removed to access Loc 1, 2, 3. See Figure 9.1)	00000 Input type selection	[0] Enabled 1 Disabled
	00000 Meter setup, configuration and decimal point selection.	(0) Enabled (1) Disabled
	00000 Filter	[0] Enabled 1 Disabled

Loc 1 (continued) Lockout of Menu Items (Lockout jumper must be removed to access Loc 1, 2, 3. See Figure 9.1)	00000	0 Enabled
	Scale or Lo, Hi Input	11 Disabled
	00000 Offset or Lo, Hi Reading	0 Enabled [1 Disabled
Loc 2 Lockout of Front Panel Keys (Lockout jumper must be removed to access Loc 1, 2, 3. See Figure 9.1)	$\begin{aligned} & \hline 0000 \\ & \text { Alarm Setup } \end{aligned}$	[0] Enabled 1 Disabled
	0000 Alarm setpoint programming	[0] Enabled 1 Disabled
	0000 Analog output scaling 0000 Serial interface setup	0 Enabled 1 Disabled 0 Enabled 1 Disabled
Loc 3 Lockout of Front Panel Keys (Lockout jumper must be removed to access Loc 1, $2,3$. See Figure 9.1)	0000 View peak value pushbutton	0 Enabled (1) Disabled
	0000 View alarm setpoints pushbutton	0 Enabled [1] Disabled
	0000 Reset pushbutton (peak and latched alarms)	0 Enabled 1. Disabled
	0000 Reset pushbutton (meter reset)	(0) Enabled 1 Disabled

This section is designed to provide basic meter setup instructions when a direct readout of voltage or current is required. When an external shunt is used to monitor current, the setup for process signals, section 12, should be used. Some menu items, such as leading zero blanking, display filtering, etc., are not discussed in this section and have been set to the most commonly used values. Should these items require change, refer to section 10 for selection information. For configuration of optional boards, see the appropriate section elsewhere in the manual.

11.1 RANGE JUMPER SELECTIONS

Voltage	
Input	Jumpers Required
200 mV	E, b
2 V	E, a
20 V	F, g, b
200 V	F, g, a
660 V	F, h, a

Current

Input	Jumpers Required
$2 m A$	D, h, b
20 mA	C, h, b
200 mA	$\mathrm{~B}, \mathrm{~h}, \mathrm{~b}$
5 A	$\mathrm{~A}, \mathrm{~h}, \mathrm{~b}$

Figure 11.1 DC Signal Conditioner

Notes 1. See Section 22 to select 5,10 or 24 Vdc excitation.
2. Jumpers designated by capital letters require 5 mm (0.2in) jumpers. Jumpers designated by lower case letters require 2.5 mm (0.1 in) jumpers.
3. Spare jumpers should be stored on single unused jumper posts not associated with capital letter designations

11.2 MENUSELECTION

Whenever the scale factor is 1.0 and offset is zero, the meter displays a direct readout of the signal input in (milli)volts or (milli)amperes. In the following example, the meter is configured for a full scale display of 0 to 20 V or 0 to 20 mA equals 0 to 20.000. Other ranges follow the same setup format. Note that the decimal point selection does not affect the displayed value. A full scale value of 20000 may be displayed as 20.000 milliamps or 20000 microamps. During setup, it may be necessary to enable some menu items that are locked out. See Section 9 for further information.

MENU KEY $\boldsymbol{\square}$	DIGIT SELECT KEY	VALUE SELECT KEY
InPuE	$d \Gamma 1$	$7 \square \square 1$
Press the $\boldsymbol{\square}$ key to display InPut (Input type selection). Note: Selection of input type \& range must match jumper selection in Section 11.1	Press untildCU (dc Volts) is displayed or dC A (DC Amps) is displayed.	Press A to select 0.2 V , 2.0V, 20.0V, 200.0V, 660.0 V or 2.0a, 20.0a, 200.0a (milliamps) or 5.0A (Amps)
5EEчP Press the $\boldsymbol{\longrightarrow}$ key to display SEtuP. (Basic setup) See Section 9, Page 10 for detailed description of selections for digits 1 through 5 .	Press to display status and select left digit. Press again to select another digit. Selected digit will flash.	Press $\boldsymbol{\Delta}$ to select value for flashing digit. Digit 1: " 0 " $=20,000$ cts. full scale " 3 " $=2,000 \mathrm{cts}$. full scale Digit 4: " 0 " = scale and offset method
$\square E[P E$	$\square \square \square$	$\square d \square d \square$
Press the $\boldsymbol{\longrightarrow}$ key to display dEcPt (Decimal	Press to display location of decimal point.	Press $\boldsymbol{\Delta}$ to change decimal point location.
point $5[B L E$	$0 \square 5.00$	$1.077 \square$
Press the \square keyto display SCALE (Scale factor).	Press to display value and select left digit. Press again to select another digit.	Use $\boldsymbol{\Delta}$ to set digit values. Set value and decimal to 1.0 (1.0000, 01.000, etc)
DFFSE	$\square 175 \square$	$\Pi \square \square \square \square$
Press the $\boldsymbol{\square}$ key to display OFFSt (Zero offset).	Press to display value and select left digit. Press again to select another digit.	Use $\boldsymbol{\Delta}$ to set digit values. Set value to 00.000 . Decimal point is fixed by Dec.Pt.
TESEE	5	$7 \square$

This section provides basic meter setup instructions for a direct readout in engineering units such as psi, rpm, etc. The signal input may come from a transducer or other voltage or current source. Some menu items, such as leading zero blanking, display filtering, etc., are not discussed in this section and have been set to the most commonly used values. Should these items require change, refer to section 10 for selection information. For configuration of optional boards, see the appropriate section elsewhere in the manual.

12.1 RANGE JUMPERSELECTIONS

Voltage	
Input	Jumpers Required
200 mV	E, b
2 V	E, a
20 V	$\mathrm{~F}, \mathrm{~g}, \mathrm{~b}$
200 V	$\mathrm{~F}, \mathrm{~g}, \mathrm{a}$
660 V	$\mathrm{~F}, \mathrm{~h}, \mathrm{a}$

Current

Input	Jumpers Required
2 mA	$\mathrm{D}, \mathrm{h}, \mathrm{b}$
20 mA	$\mathrm{C}, \mathrm{h}, \mathrm{b}$
200 mA	$\mathrm{~B}, \mathrm{~h}, \mathrm{~b}$
5 A	$\mathrm{~A}, \mathrm{~h}, \mathrm{~b}$

Figure 12.1 DC Signal Conditioner
Notes 1. See Section 22 to select 5,10 or 24 Vdc excitation.
2. Jumpers designated by capital letters require $5 \mathrm{~mm}(0.2 \mathrm{in})$ jumpers. Jumpers designated by lower case letters require 2.5 mm (0.1 in) jumpers.
3. Spare jumpers should be stored on single unused jumper posts not associated with capital letter designations

12.2 MENUSELECTION

Display in engineering units is most easily programmed using the coordinates of 2 points. There are two methods. The first is to enter the 4 values (low signal input, desired reading at the low signal input, high signal input, and desired reading at the high signal input) directly via the front panel pushbuttons or the RS232 interface. The second method is to have the meter read the signal input at a known low value and store that reading as the low in and read a known high signal value and store that value as high in. The low and high known values are entered as the lo rd and hi rd. An example of using the reading the input method of coordinates of 2 points is shown for the load cell meter, Section 17. Selecting the reading method (menu item "config" digit 2 set to 1) overides either method of scaling selected in "setup". The following example is the 2 coordinate method of directly entering the 4 values.

To set up the range using coordinates of 2 points, values for low signal input, low display, high signal input and high display are entered. The following example uses this scaling method. Signal input is 4 to 20 mA and displayed value is 000.00 (at 4 mA) to 100.00 (at 20 mA). When setting up the meter, it may be necessary to enable some menu items. See Section 9 for further information.

MENU KEY \square	DIGIT SELECT KEY	VALUE SELECT KEY

H_{1}

Press the \square key to display Hi rd (Desired meter reading at high signal input).

00ДDD
Press to display value and select left digit. Press again to select another digit. Decimal point set by Dec.Pt.

rE5EE

IDIDD

Press the \square key. Continue to press \square (or \square and $\boldsymbol{\Delta}$ simultaneously) until r ESEt is displayed. The meter will now go to the operating mode and display the value of the input signal.
13.

THERMOCOUPLES

13.1 RANGE JUMPER SELECTIONS

Thermocouple Type

Type	Jumpers Required
J, K, E, N	f
T, R, S	e

Open Thermocouple

Open TC Indication	Jumpers Required
Upscale Downscale	c

Figure 13.1 Temperature Signal Conditioner

13.2 MENUSELECTION

Thermocouple type and Celsius or Fahrenheit scale are selected by input type. However, Kelvin or Rankine may be displayed by entering the appropriate offset to the selected scale. Although 0.01 degree resolution may be selected, it is not recommended for use with thermocouples. When setting up the meter, it may be necessary to enable some of the menu items. See Section 9 for further information.
MENU KEY \square

DIGIT SELECT KEY

VALUE SELECT KEYA

InPut

Press the \square key to display InPut（Input type selection）． Note：Selection of input type \＆range must match jumper selection in Section 13．1．

5EEuP

Press the \square key to display SEtuP．（Basic setup）
See Section 9，Page 10 for detailed description of selec－ tions for digits 1 through 5.

15

Press to display input selected．Press $>$ again until tC（thermocouple）is displayed．

Press $\boldsymbol{\Delta}$ to select thermo－ couple type J，K，T，E，R，S and ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ scale $\left(J^{\circ} \mathrm{F}, \mathrm{J}^{\circ} \mathrm{C}\right.$ ， $K^{\circ} F, K^{\circ} \mathrm{C}, t^{\circ} F, t^{\circ} \mathrm{C}, E^{\circ} \mathrm{F}, \mathrm{E}^{\circ} \mathrm{C}$ ， $\left.r^{\circ} F, r^{\circ} \mathrm{C}, \mathrm{S}^{\circ} \mathrm{F}, \mathrm{S}^{\circ} \mathrm{C}\right)$

DODOD

$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
Press to display status and select left digit．Press －again to select another digit．Selected digit will flash．

DDDDD

Press to display value and select left digit．Press again to select another digit．

Пロロロロ

Use $\boldsymbol{\Delta}$ to set digit values and set to 000.00 for ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ or

DE7ER
set value to 273.2 if ${ }^{\circ} \mathrm{C}$ is selected to display in ${ }^{\circ}$ Kelvin and 459.7 if ${ }^{\circ} \mathrm{F}$ is selected to display in ${ }^{\circ}$ Rankine．

4519

Press the \square key．Continue to press \square（or \longrightarrow and $\boldsymbol{\Delta}$ simultaneously）until r ESEt is displayed．The meter will now go to the operating mode and display the value of the input signal．
14.

14.1 RANGE JUMPER SELECTION

All RTD Types

Jumpers Required $2-, 4$-wire
b, f

Jumpers Required 3--wire
a, f

Note: See Section 22 to select 10 Vdc excitation.
Figure 14.1 Temperature Signal Conditioner

14.2 2-WIRE RTD LEAD COMPENSATION

This section describes how to remove the error caused by lead resistance in a 2-wire RTD. Ambient temperature changes will cause some error in the readings; the higher the lead resistance, the greater the error. When performing this procedure, the leads should be shorted together as close as possible to the RTD. This step is not necessary when using 3- or 4-wire RTD's since lead resistance compensation is automatic in the meter. When setting up the meter, it may be necessary to enable some of the menu items. See Section 9 for further information.

14.3 MENU SELECTIONS

The following example is setup for a 4 -wire DIN RTD. When setting up the meter, it may be necessary to enable some of the menu items. See Section 9 for further information.

MENU KEY \square	DIGIT SELECT KEY $>$	VALUE SELECT KEY
Press the \square key to display InPut (Input type selection). Note: Selection of input type \& range must match jumper selection in Section 14.1.		Press $\boldsymbol{\Delta}$ to select rtd type $\left(4 d^{\circ} \mathrm{F}, 4 \mathrm{~d}^{\circ} \mathrm{C}, 4 \mathrm{~A}^{\circ} \mathrm{F}, 4 \mathrm{~A}^{\circ} \mathrm{C}\right.$, $3 d^{\circ} \mathrm{F}, 3 \mathrm{~d}^{\circ} \mathrm{C}, 3 \mathrm{~A}^{\circ} \mathrm{F}, 3 \mathrm{~A}^{\circ} \mathrm{C}$, $2 d^{\circ} \mathrm{F}, 2 \mathrm{~d}^{\circ} \mathrm{C}, 2 \mathrm{~A}^{\circ} \mathrm{F}, 2 \mathrm{~A}^{\circ} \mathrm{C}$) Number = \# of leads Letter $=$ Din or ANSI RTD
Press the \longrightarrow key to display SEtuP. (Basic setup) See Section 9, Page 10 for detailed description of selections for digits 1 through 5 .	JDOD Press $>$ to display status and select left digit. Press again to select another digit. Selected digit will flash.	Press to select value for flashing digit. Digit 1: " 0 " $=0.1$ degree resolution "2" = 0.01 degree resolution "3"=1 degree resolution
Press the \square key to display SCALE. Divide 100 by resistance of RTD at $0^{\circ} \mathrm{C}$ to calculate scale factor.	Press to display value and select left digit. Press again to select another digit.	Use $\boldsymbol{\Delta}$ to set digit values. Set value and decimal to calculated scale factor.
Press the \longrightarrow key to display OFFSt (Zero offset).	पОО 0 and select left digit. Press again to select another digit.	पОDDD Use $\boldsymbol{\Delta}$ to set digit values and set to 0.0 for ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ or set value to 273.2 if ${ }^{\circ} \mathrm{C}$ is selected to display in ${ }^{\circ}$ Kelvin and 459.7 if ${ }^{\circ} \mathrm{F}$ is selected to display in ${ }^{\circ}$ Rankine.
$r E S E E$ Press the \square key. Continue is displayed. The meter will g	press \longrightarrow (or \longrightarrow and the operating mode and disp	5D simultaneously) until rESEt he value of the input signal.

15. 1 RANGE JUMPER SELECTIONS

Notes

1. See Section 22 to select 10 V removejumpers for externa tion.
2. Jumpers designated by low ϵ letters require $2.5 \mathrm{~mm}(0.1 \mathrm{in}) \mathrm{j}$
3. Spare jumpers should be sts single unused jumper posts.

Figure 15. 1 DC Signal Conditioner

15. 2 MENUSELECTION

Display in engineering units is most easily programmed using the coordinates of 2 points. There are two methods. The first is to enter the 4 values (low signal input, desired reading at the low signal input, high signal input, and desired reading at the high signal input) directly via the front panel pushbuttons or the RS232 interface. The second method is to have the meter read the signal input at a known low value and store that reading as the low in and read a known high signal value and store that value as high in. The low and high known values are entered as the lo rd and hi rd. An example of using the reading the input method of coordinates of 2 points is shown for the load cell meter, Section 17. Selecting the reading method (menu item "config" digit 2 set to 1) overides either method of scaling selected in "setup". To set up the range using coordinates of 2 points, values for low signal input, low display, high signal input and high display are entered. The following example uses this scaling method. Signal input is 0 to 20 mV and displayed value is 000.00 (at 0 mV) to 100.00 (at 20 mV). When setting up the meter, it may be necessary to enable some menu items. See Section 9 for further information.

This section provides basic setup instructions for true RMS voltage or current monitoring. An RMS signal conditioner is required. Some menu items, such as leading zero blanking, display filtering, etc., are not discussed in this section and have been set to the most commonly used values. Should these items require change, refer to section 10 for selection information. For configuration of optional boards, see the appropriate section elsewhere in the manual.

16. 1 RANGE JUMPER SELECTIONS

Voltage	
Input	Jumpers Required
	AC Coupled
200 mV	E, k
2 V	E, j
20 V	F, g, k
200 V	F, g, j
660 V	F, h, j

Current

Input	Jumpers Required
	AC Coupled
20 mA	D, h, k
200 mA	C, h, k
$5 A$	B, h, k
	A, h, m

Figure 16. 1 RMS Signal Conditioner

Notes 1. Jumpers designated by capital letters require 5 mm (0.2in) jumpers. Jumpers designated by lower case letters require $2.5 \mathrm{~mm}(0.1 \mathrm{in})$ jumpers.
2. Spare jumpers should be stored on single unused jumper posts not associated with capital letter designations

16. 2 MENUSELECTION

Whenever the scale factor is 1.0 and offset is zero, the meter displays a direct readout of the signal input in (milli)volts or (milli)amperes. In the following example, the meter is configured for a full scale display of 0 to 20 V or 0 to 20 mA equals 20.000. Other ranges follow the same setup format. Note that the decimal point selection does not affect the displayed value. A full scale value of 20000 may be displayed as 20.000 Volts or 20000 millivolts. When an external shunt or current transformer is used to monitor current, the appropriate scale factor must be entered. A 5A CT input to the meter displays 20000 (2000 when $31 / 2$ digit is selected). For an 800 Amp CT, divide 8000 (desired full scale display with . 1 Amp resolution) by 20000 (full scale when the scale factor is 1.0) for the correct scale factor. Enter .4 as a scale factor. During setup, it may be necessary to enable some menu items that are locked out. See Section 9 for further information.

MENU KEY \square	DIGIT SELEC	VALUE SELECT KEY
InPut Press the \square key to display InPut (Input type selection). Note: Selection of input type \& range must match jumper selection in Section 16. 1.	Press until ACU (ac Volts) is displayed or AC A (ac Amperes) is displayed.	Press \boldsymbol{A} to select 0.2 V , 2.0V, 20.0V, 200.0V or 660.0 V or 2.0a, 20.0a, 200.0a (milliamps) or 5.0A (Amps)
Press the \square key to display SEtuP. (Basic setup). See Section 9, Page 10 for detailed description of selections for digits 1 through 5.	Press to display status and select left digit. Press again to select another digit. Selected digit will flash.	to select value for flashing digit. Digit 1: " 0 "= 20,000 cts. full scale "2"=Same as "0" but LSD is fixed zero. " 3 "=2,000 cts. full scale Digit 4: Set to "0" for scale and offset
Press the \longrightarrow key to display dEcPt (Decimal point).	Press to display decimal point location.	Press A to select decimal point location.
5[ALE Press the \square key to display SCALE (Scale factor).	DD500 Press to display value and select left digit. Press again to select another digit.	IIDID Use $\boldsymbol{\Delta}$ to set digit values. Set value and decimal to 1.0 or appropriate multiplier for external shunts or CT's.
UFF5E Press the \square key to display OFFSt (Zero offset).	Press to display value and select left digit. Press again to select another digit.	IDIDD Use $\boldsymbol{\Delta}$ to set digit values. Set value to 00.000. Decimal point is fixed by Dec.Pt.
$\begin{aligned} & \text { rESEE } \\ & \text { PMDDDD } \\ & \text { is dissplayed. The meter will now go to the operating mode and display the value of the input } \end{aligned}$		

This section provides setup instructions for use as a microvoltmeter or with load cells and strain gauges. 10 Volt excitation will power up to 4350 Ohm load cells. Sense leads may be used to compensate for lead resistance of the excitation supply. For configuration of optional boards, see the appropriate section elsewhere in the manual.

17.1 RANGE JUMPER LOCATIONS

Input	Jumper Locations	Full Scale Display Scale factor $=1$
20 mV	e	20000
50 mV	a	50000
100 mV	b	10000
250 mV	c	25000
500 mV	d	50000

Notes 1. See Section 22 to select 10V excitation.
2. Jumpers are $2.5 \mathrm{~mm}(0.1 \mathrm{in})$.

Figure 17.1 Load Cell Signal Conditioner

17.2 MENUSELECTION

To scale the meter using the reading method of coordinates of 2 points, the low signal input and high signal input are read directly by the meter and are stored as Lo in and Hi in. For example, the full scale range of a load cell is 500 pounds and has an output of $2 \mathrm{mV} / \mathrm{V}$. With 10 V excitation, the full scale range of 20 mV selected. The resolution is .01 pounds. With no weight on the scale, the meter should read 0.00 and with a 500 pound weight on the scale the meter should display 500.00 pounds. With no weight on the scale, press the menu key to select Lo inand press the digit select key. The meter will take readings and display the millivolt value of the input signal. Pressing the value select key will store this reading as Lo in. Press the menu key to select Hi in, place the 500 pound weight on the scale and repeat the procedure the same as for Lo in. Press the menu key to select lo rd (Low reading) and enter 000.00, then press the menu key to select Hi rd (High reading) and enter 500.00. Advantages of this method are accuracy, since reading the value corrects for any error in the transducer, and ease of recalibration. To recalibrate the meter, take readings at 0 and 500 pounds, Lo rd and Hi rd do not need to be reentered. If a 500 lb . weight was not available, the same result can be achieved by using any known weight. During setup, it may be necessary to enable some menu items. See Section 9 for further information. See Section 12, Process Meters, for an example scaling by direct entry of the input values.

CDODI

Press to display status. Press again to select digit. Selected digit will flash.

Press the \quad key to display dEcPt (Decimal

Press \boldsymbol{A} to select value. Digit 2:"1"= Reading input 2 coodinate method of scaling.

Press to display decimal point location.

तdतdत
Press Δ to change decimal point location.
 rESEt is displayed. The meter will go to the operating mode and display the value of the input

Press the \square key to display Lo in (Low signal input value). Apply an input for a known low value.

$H_{1} \quad$ In

Press the \square key to display Hi in (High signal input value). Apply an input for a known high value.

Press the \square key to display Lo rd (Desired meter reading at low signal input).

$\mathrm{H}_{1} \mathrm{rd}$

Press the \square key to display Hi rd (Desired meter reading at high signal input).

Press to display input signal. Meter will momentarily blank and then display a reading.

1495

 Press to display input signal. Meter will momentarily blank and then display a reading.
DODDD

Press to display value and select left digit. Press again to select another digit. Decimal point set by dEc.Pt

Press to display value and select left digit. Press again to select another digit. Decimal point set by dEc.Pt .
low input

18．1 OPERATING MODE MENU SELECTION

When setting up the meter，it may be necessary to enable some of the menu items．See Section 9 for further information．

MENU KEY \rightarrow	DIGIT SELECT KEY ${ }^{\text {P }}$	VALUESELECTKEYA
$\overline{\overline{H L L S E E}}$ Press the \longrightarrow key until ALSEt （Alarm setup）is displayed． See Section 9，ALSEt for de－ tailed selection information for Digits 1 through 5.	ODDDD Press to display status． Press again to select digit．Selected digit will flash．	Press \boldsymbol{A} to select value for flashing digit Digit 1：Relay state in alarm Digit 2：Latching or non－latch－ ing output Digit 3：Alarm high，low，or disabled Digit 4：Hysteresis or deviation Digit 5：Time delay
तIEU IB Pressthe \longrightarrow keyanddEU1b （Alarm 1 band deviation）or dEU1H（Alarm 1 hysteresis） is displayed if ALSEt digit 4 is not set to 4 ．	पロロロロ Press to display value． Press again to select digit．Selected digit will flash．	Пリエクワ Using $\boldsymbol{\Delta}$ to select digit and to set digit value，enter deviation value for setpoint 1 Relays turn on and off at setpoint if value is zero．
חILIM Press the \longrightarrow key anddEU2b （Alarm 2 band deviation）or dEU2H（Alarm 2 hysteresis） is displayed if ALSEt digit 4 is not set to 4 ．	ППDロロ Press to display value． Press again to select digit．Selected digit will flash．	ППГПП Using $\mathbf{\Delta}$ to select digit and to set digit value，enter deviation value for setpoint 2 Relays turn on and off at setpoint if value is zero．

18．2 NORMAL OPERATION

When deviation and hysteresis are not enabled or deviation is set to zero，the alarm energizes at and above the setpoint and deenergizes below the setpoint if high alarm is selected．The alarm energizes at and below the setpoint and deenergizes above the setpoint if low alarm is selected．The setpoint value is not displayed if the alarm is disabled．

18.3 BAND DEVIATION

When deviation is selected from the setup menu, a value is entered for the amount of deviation required. This value represents the number of counts at which the relay will be energized above and below the setpoint. For example, if the setpoint is set to 10,000 and a deviation value of 200 was entered, the relay will activate below 9800 and above 10,200.

18.4 HYSTERESIS

When hysteresis is selected from the setup menu, a value is entered for the amount of hysteresis required. This value represents the number of counts at which the relay will be energized above and deenergized below the setpoint. For example, if the setpoint is set to 10,000 and a hysteresis value of 200 was entered, the relay will activate at 10200 and deactivate at 9800 .

18. 3 VIEWING AND CHANGING SETPOINTS

When viewing or changing the setpoint values, it is not necessary to enter the setup menu. This allows the meter to continue conversions and provide outputs when the setpoints are displayed.

ALARM KEY	DIGIT SELECT KEY	VALUE SELECT KEY

The analog output option provides a 0 to 20 mA and a 0 to 10 Vdc linear signal derived from the displayed reading. The low signal output and high signal output may be set to equal any displayed value. Although both outputs are available, only one is calibrated to specifications. The other output is accurate to $+/-1 \%$ of the displayed value typical (2% max).

19. 14 TO 20MA OUTPUT SCALING

The output is scaled by selecting a displayed value for the low signal output and a displayed value for the high signal output. For a current output, the low value is 0 mA and the high output is 20 mA . To scale a signal for 4 to 20 mA , the following procedure must be used:

1. Desired display value for 20 mA - Desired display value for $4 \mathrm{~mA}=$ Display span
2. Display span / $4=$ Offset value
3. Desired display value for $4 \mathrm{~mA}-$ Offset value $=$ An Lo
4. $\quad \mathbf{A n} \mathbf{H i}=$ Desired display value for 20 mA

19.2 ANALOG OUTPUT SETUP SOFTWARE

The following menu items are accessible only with an Analog Output option installed and appropriate lockouts enabled. See Section 10 for further information. Setup Example: 4mA to 20 mA out $=5000$ counts to 15000 counts (See Section 19.1).

20. 1 OPERATING MODE MENU SELECTION

The following menu items are accessible only with an RS-232 or RS-485 option installed and appropriate lockouts enabled. See Section 10 for further information.

MENU KEY \square	DIGIT SELECT KEY $>$	VALUE SELECT KEY A
SET Press the \square key until SEr 1 (Serial interface setup 1) is displayed.		
Press the \square key until SEr 2 (Serial interface setup 2) is displayed.	Press to display status. Press again to select digit. Digit 2: Line feed Digit 3: Alarm data sent with meter readings Digit 4: Control of output Digit 5: Meter address	Press to select value for flashing digit 2: "0"-no line feed " 1 "-<LF> after <CR> 3: "0"-no alarm data "1"-alarm data sent 4: "0"-continuous output "1"-output on command 5: "1" to "F" \& "0." to "F." Meter \#1 to Meter \#31

20.2 JUMPERSELECTION

RS232

Jumper g-installed for normal operation Jumper h-installed when used as slave display Jumper j - provides pull up resistor on RTS line Shipped with jumpers g and j installed

RS485
Jumper \mathbf{g} and \mathbf{j} - add 121 ohm load resistors andare installed with long cables. If multiple meters are on same line, only the last meter in the line should be jumpered. Jumper \mathbf{d} and $\mathbf{f}-$ installed for full duplex operation Jumper \mathbf{c} and \mathbf{e} - installed for half duplex operation Shipped with jumper d and f installed.

21.

PARALLEL BCD OUTPUT

21. 1 OPERATING MODE MENU SELECTION

The following menu items are accessible only with a BCD option installed and appropriate lockouts enabled. See Section 9 for further information.

MENU KEY \rightarrow	DIGIT SELECT KEY	VALUE SELECT KEY
5Er I Press the $\boldsymbol{\square}$ key until SEr 1 (Serial interface setup 1) is displayed.		Press \boldsymbol{A} to select value for flashing digit 3: "0"-Send unfiltered signal "1"-Send filtered signal 5: "0"-Line frequency "1" to "9" - Batch display rate (3.5/ sec) to Batch display rate / 256 (1 every 15 min.)

21. 2 BCDOUTPUTLEVELS

The BCD option provides isolated, buffered, stored, 3-state parallel outputs that are selectable for either 0 to 5 V logic levels (LSTTL, CMOS compatible) or 0 to 15 Vdc . Selection jumpers are located on the BCD board. BCD outputs are positive true. Polarity bit is positive true for + sign.

LOGIC LEVEL	JUMPER REQUIRED
0 to 5 Vdc	b
0 to 15 Vdc	a

21.3 BCD CONTROL SIGNALS

Enable Logical 0 - All outputs go to the high impedance state Logical 1-BCD information is available at outputs.
$\overline{\text { BCD Hold }}$ Logical $0-B C D$ from last update prior to BCD Hold going low is stored Logical 1-BCD information updates at selected rate.

Data Ready Logical 0-BCD outputs are valid
Logical 1 - BCD outputs are not valid

Figure 22. 1 - Power Supply
22. 1 SELECTION OF 5, 10 OR 24VDC OUTPUT

Voltage Output	Jumper Locations
5 Vdc	b, d and e
10 Vdc	b, d and f
24 Vdc	c

22. 2 SELECTION OF OTHER JUMPERS

Jumper 'a - Front panel menu lockout, locked when installed (see Section 10.1)
Jumper 'g ' - Provides +5 V power output at P1-4 when installed Jumper ' \mathbf{h} ' - Connects "Digital Input B" to P1-4 when installed

23.1 FUNCTION OF DIGITAL INPUTS

\bar{T} Tare Logical 0 - The present display value is set to zero and stored as an offset value. Logical 1 - The displayed value is equal to the signal input minus the tare value.
$\overline{\text { Peak Display }}$ Logical 0 - The peak value of the input signal is displayed.
Logical 1 - The present value of the input signal is displayed.
$\overline{\text { Hold }}$ Logical 0 - The meter display and outputs are held at the last reading. Logical 1 - The display and outputs are updated normally
$\overline{\text { Reset Logical } 0 \text { - The microcomputer reads and resets the meter to nonvolatile memory values }}$ Logical 1 - The meter display and outputs operate normally.

Function Reset Logical 0 - The microC resets peak to present value and resets alarms. Logical 1 - The meter display and outputs operate normally.

External Decimal Points	Input A	Input B	Decimal Pts 1	Decimal Pts 2
	1	1	XXXXX	XXXX.X
	0	1	XXXX.X	XXX.XX
	1	0	XXX.XX	XX.XXX
	0	0	XX.XXX	X.XXXX

23.3 MENUSELECTIONS

DIGIT SELECT KEY
VALUE SELECT KEYA

SEE~P

Press to display status. Press again to select digit. Selected digit will flash. Digit 5: digital inputs A \& B at J1, Pins 5 and 4.

Press \boldsymbol{A} to select value for flashing digit
0 A: Reset B: Meter Hold
1 A: Function Reset
B: Peak display
2 A: Meter Hold B: Peak
3 A: Meter Hold
B: Tare
4 A: Peak
B: Tare
5 A: Tare
B: Reset
6 External Decimal Pts. 1
7 External Decimal Pts. 2

All ranges of the meter have been digitally calibrated at the factory prior to shipment. The calibration equipment is certified to NIST standards. Calibration constants are stored in nonvolatile memory in EEPROM on the signal conditioner. This eliminates much of the analog circuitry that causes drift and provides superior long term accuracy and stability.

Since the calibration is stored on the signal conditioner and analog output boards, all boards may be mixed and interchanged without requiring recalibration. If recalibration is required, the meter may be returned to the factory or any authorized distributor.

For the customer requiring on site calibration, an RS-232 or RS-485 option must be installed to perform the calibration. The interface card may be temporarily installed and then removed upon completion of calibration. Step-by-step instructions for calibration and the equipment required is available from the factory.
25.

SPECIFICATIONS

BASIC METER

Display

A to D Conversion

Noise Rejection

CMV from DC to 60 HzSafety-rated to 250Vac, 4.2kVp per High Voltage Test
CMR from DC to 60 Hz 130 dB
NMR at $50 / 60 \mathrm{~Hz}$... 90 dB with minimum digital filtering

External Inputs/Outputs (CMOS/TTL Levels)

ACCURACY

DC Volts

| VOLTAGE
 RANGE | RESOLUTION | INPUT | ERROR |
| :---: | :---: | :---: | :---: | | AT $25^{\circ} \mathrm{C}$ |
| :---: |$|$| 200.00 mV | 10 uV | 1 G |
| :---: | :---: | :---: |
| 2.0000 V | 100 uV | 1 G |
| 20.000 V | 1 mV | 1 M |
| 20.00 V | 10 mV | 1 M |
| 660.0 V | 100 mV | 1 M |

DC Amperes

CURRENT RANGE	RESOLUTION	INPUT OHMS	ERROR AT $25^{\circ} \mathrm{C}$
2.0000 mA	0.1 uA	100	$.01 \%$ Full
20.000 mA	1.0 uA	10	Scale
200.00 mA	10 uA	1	$+/-2 \mathrm{Ct}$.
5.000 A	1.0 mA	.01	

Ratio

VOLTAGE RANGE	RESOLUTION	INPUT OHMS	ERROR AT $25^{\circ} \mathrm{C}$
200.00 mV	10 uV	1 G	$.01 \%$ Full
2.0000 V	100 uV	1 G	Scale
20.000 V	1 mV	1 M	+-2 Ct.

True RMS Volts (1 to 100% Full Scale)

VOLTAGE RANGE	RESOLUTION	INPUT OHMS	ERROR AT $25^{\circ} \mathrm{C}$
200.00 mV	10 uV	22 M	
2.0000 V	100 uV	22 M	$.1 \% \mathrm{FS}$
20.000 V	1 mV	1 M	$+/-10 \mathrm{Ct}$
200.00 V	10 mV	1 M	from 10 Hz
660.0 V	100 mV	1 M	to 10 kHz

True RMS Amperes (1 to 100% Full Scale)

CURRENT RANGE	RESOLUTION	INPUT OHMS	ERROR AT $25^{\circ} \mathrm{C}$
2.0000 mA	0.1 uA	100	$.1 \% \mathrm{FS}$
20.000 mA	1.0 uA	10	$+/-10 \mathrm{Ct}$ 200.00 mA 5.000 A
10 uA	1	from 10 Hz	
to 10 kHz			

RTD's (.01, .1, 1.0 Degree Resolution)

PT100 TYPE	RANGE	ERROR
AT $25^{\circ} \mathrm{C}$		
DIN	$-202^{\circ} \mathrm{C}$ to $+850^{\circ} \mathrm{C}$	$.01 \%$ FS $+/-0.03^{\circ} \mathrm{C}$
.00385	$-331^{\circ} \mathrm{F}$ to $+1562^{\circ} \mathrm{F}$	$.01 \%$ FS $+/-0.05^{\circ} \mathrm{F}$
ANSI	$-202^{\circ} \mathrm{C}$ to $+631^{\circ} \mathrm{C}$	$.01 \% \mathrm{FS}+/-0.04^{\circ} \mathrm{C}$
.003925	$-331^{\circ} \mathrm{F}$ to $+1168^{\circ} \mathrm{F}$	$.01 \% \mathrm{FS}+/-0.07^{\circ} \mathrm{F}$

Thermocouple

(.1, 1.0 Degree Resolution)

TC TYPE	RANGE	ERROR AT $25^{\circ} \mathrm{C}$
J	$-210^{\circ} \mathrm{C}$ to $+760^{\circ} \mathrm{C}$ $-347^{\circ} \mathrm{F}$ to $+1400^{\circ} \mathrm{F}$	$.01 \% \mathrm{FS}+/-0.09^{\circ} \mathrm{C}$ $.01 \% \mathrm{FS}+/-0.16^{\circ} \mathrm{F}$
K	$-244^{\circ} \mathrm{C}$ to $+1372^{\circ} \mathrm{C}$ $-408^{\circ} \mathrm{F}$ to $+2501^{\circ} \mathrm{F}$	$.01 \% \mathrm{FS}+/-0.1^{\circ} \mathrm{C}$ $.01 \% \mathrm{FS}+/-0.17^{\circ} \mathrm{F}$
T	$0^{\circ} \mathrm{C}$ to $+400^{\circ} \mathrm{C}$ $-2577^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ $+32^{\circ} \mathrm{F}$ to $752^{\circ} \mathrm{F}$ $-430^{\circ} \mathrm{F}$ to $+32^{\circ} \mathrm{F}$	$.01 \% \mathrm{FS}+/-0.03^{\circ} \mathrm{C}$ $.01 \% \mathrm{FS}+/-0.2^{\circ} \mathrm{C}$ $.01 \% \mathrm{FS}+/-0.05^{\circ} \mathrm{F}$ $.01 \% \mathrm{FS}+/-0.36^{\circ} \mathrm{F}$
E	$-240^{\circ} \mathrm{C}$ to $+1000^{\circ} \mathrm{C}$ $-400^{\circ} \mathrm{F}$ to $+1830^{\circ} \mathrm{F}$	$.01 \% \mathrm{FS}+/-0.18^{\circ} \mathrm{C}$ $.01 \% \mathrm{FS}+/-0.32^{\circ} \mathrm{F}$
N	$-244^{\circ} \mathrm{C}$ to $+1372^{\circ} \mathrm{C}$ $-408{ }^{\circ} \mathrm{F}$ to $+2501^{\circ} \mathrm{F}$	$.01 \% \mathrm{FS}+/-0.1^{\circ} \mathrm{C}$ $.01 \% \mathrm{FS}+/-0.17^{\circ} \mathrm{F}$
S	$-46^{\circ} \mathrm{C}$ to $+1768^{\circ} \mathrm{C}$ $-51^{\circ} \mathrm{F}$ to $+3213^{\circ} \mathrm{F}$	$.01 \% \mathrm{FS}+/-0.12^{\circ} \mathrm{C}$ $.01 \% \mathrm{FS}+/-0.22^{\circ} \mathrm{F}$
R	$-45^{\circ} \mathrm{C}$ to $+1768^{\circ} \mathrm{C}$ $-499^{\circ} \mathrm{F}$ to $+3214^{\circ} \mathrm{F}$	$.01 \% \mathrm{FS}+/-0.17^{\circ} \mathrm{C}$ $.01 \% \mathrm{FS}+/-0.31^{\circ} \mathrm{F}$

Load Cell Inputs

INPUT RANGE	$\left\lvert\, \begin{aligned} & \text { RESO- } \\ & \text { LUTION } \end{aligned}\right.$	OUTPUT ZERO RANGE	SPAN RANGE	$\begin{array}{\|c\|} \hline \text { ERROR } \\ \text { AT } \\ 25^{\circ} \mathrm{C} \end{array}$
20.000 mV	1 uV	-99,999	0	.01\%Full
50.000 mV	2.5 uV	to	to	Scale
100.00 mV	5 uV	+99,999	+/-99,999	+/-1Ct.
250.00 mV	12.5 uV			
500.00 mV	25 uV			

Span Tempco		
Load Cell Meter only ... 0.0015% of reading $/{ }^{\circ} \mathrm{C}$		
Zero Tempco .. $0.2 \mathrm{uV} /{ }^{\circ} \mathrm{C}$		
Reference Junction.. 0.03 degree/deg		

POWERSUPPLIES

Input Voltage (std) .. 85 to 264 Vac, 90 to 370 Vdc	
Input Voltage (opt)	.. 8 to $28 \mathrm{Vac}, 9$ to 37 Vdc
Frequency ..DC and 47 to 440 Hz	
Consumption.. 5.3 Watts max.	
Excitation Power Supplies	
Outputs	$5 \mathrm{Vdc}, 5 \%, 100 \mathrm{~mA}$ max $10 \mathrm{Vdc}, 5 \%, 120 \mathrm{~mA}$ max. $24 \mathrm{Vdc}, 5 \%, 40 \mathrm{~mA}$ max.
Ripple Isolation...	\qquad 100 mVp max. per High Voltage Tes

DUAL CONTROLLER OPTION

Basic

Power
Provided by basic meter Update Rate .. $56 / \mathrm{s}$ at $60 \mathrm{~Hz}, 47 / \mathrm{s}$ at 50 Hz
Setup setpoint values may be entered by front panel pushbuttons or via RS-232 or RS-485
Lockouts \qquad Front panel pushbuttons control display and change of setpoints, only control display of setpoints, or are disabled.
Output Operation
\qquad either output may be set to operate above, below or around the setpoint, latching or non-latching or output disabled
Filtering \qquad comparison to the setpoints may be either from the filtered or unfiltered input signal
\qquad selectable time delay of output status change of 1 to 128 readings
\qquad

Alarm Status Indicators

Type
2 red LED lamps
Relay Output
Contact Rating
10 A @ 240 Vac, 8 A @ 24 Vdc
Safety Certification VDE, UL, and CSA
Coil to ContactsSafety-rated to 250Vac, 4.2kVp per High Voltage Test
Between Open Contacts withstand 4.2 kVp for 1 min
Pickup 26 ms typ.
Release 22 ms typ.
Solid State Relay Output
Voltage Rating $125 \mathrm{Vac}, 150 \mathrm{Vdc}$ max.
Current Rating 120 mAac, 240mAdc
Safety Certification VDE, UL and CSA
Isolation Safety-rated to 250Vac, 4.2 kVp per High Voltage Test
Response to input signal 17 ms typ.
ANALOG OUTPUT OPTION
Isolation Safety-rated to 250Vac, 4.2kVp per High Voltage Test
Power supplied by basic meter
Accuracy basic meter +/-0.1\% Analog Full Scale
Response Time 17 ms for unfiltered input, same as basic meter for filtered input
Compliance
0 to 20 mA 12 V (0 to 600 Ohms) 0 to 10 V ... 2 mA (5 kOhms min.) load
Scaling
Reading for Zero Output -99,999 to +99,999
Reading for Full Scale Output -99,999 to +99,999
RS-232 / RS-485 INTERFACE OPTION

IsolationSafety-rated to 250Vac, 4.2kVp per High Voltage TestPower
supplied by basic meter
Type full or half duplex (RS-485)
Baud Rates 300, 600, 1200, 2400, 4800, 9600, 19200Signal Levels
BCD OUTPUT OPTION
IsolationSafety-rated to 250Vac, 4.2kVp per High Voltage Test
Power supplied by basic meter
Type 3-state, stored, parallel
Signal Levels LSTTL, CMOS compatible
Controls BCD Enable, $\overline{\text { Hold, }}$, Data Ready
ENVIRONMENTAL
Operating Temperature $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Relative Humidity 90% from $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

WARRANTY

UniMeasure meter products are warranted for one year from date of shipment against defects in materials and workmanship. During the warranty period, UniMeasure, at its option, will promptly repair or replace defective units at no charge to the purchaser if the product is returned to the factory freight prepaid. The warranty is void if the product is misused, damaged by accident, disassembled or intentionally abused. UniMeasure makes no other warranties either expressed or implied other than that above. UniMeasure assumes no liability for consequential damages under any circumstances. Prices, specifications and product appearance are subject to change without notice.

